J Supercomput (2015) 71:3567-3592 @ CrossMark
DOI 10.1007/s11227-015-1449-1

Design space exploration of hardware task superscalar
architecture

Fahimeh Yazdanpanah! . Mohammad Alaei!

Published online: 10 June 2015
© Springer Science+Business Media New York 2015

Abstract For current high performance computing systems, exploiting concurrency
is a serious and important challenge. Recently, several dynamic software task manage-
ment mechanisms have been proposed. In particular, task-based dataflow programming
models which benefit from dataflow principles to improve task-level parallelism and
overcome the limitations of static task management systems. However, these pro-
gramming models rely on software-based dependency analysis, which are performed
inherently slowly; and this limits their scalability specially when there is fine-grained
task granularity and a large amount of tasks. Moreover, task scheduling in software
introduces overheads, and so becomes increasingly inefficient with the number of
cores. In contrast, a hardware scheduling solution, like Task SuperScalar (TSS), can
achieve greater values of speed-up because a hardware task scheduler requires fewer
cycles than the software version to dispatch a task. TSS combines the effectiveness of
Out-of-Order processors together with the task abstraction. It has been implemented
in software with limited parallelism and high memory consumption due to the nature
of the software implementation. Hardware Task Superscalar (HTSS) is proposed to
solve these drawbacks. HTSS is designed to be integrated in a future high performance
computer with the ability to exploit fine-grained task parallelism. In this article, a deep
latency and design space exploration of HTSS is described. For design space explo-
ration, we have designed a full cycle-accurate simulator of HTSS, called SimTSS. The
simulator has been tuned based on latency exploration of HTSS components resulted
from VHDL description of each component. As the result of this exploration, we have
found the number of components and memory capacity of HTSS for HPC systems.

B Fahimeh Yazdanpanah
yazdanpanah@uk.ac.ir

Mohammad Alaei
m_alaei @uk.ac.ir

ComputerEngineeringsDepartmentyFacultysof Engineering, Shahid Bahonar University
of Kerman, Kerman, Iran

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-015-1449-1&domain=pdf

3568 F. Yazdanpanah, M. Alaei

Keywords Task scheduling - Task parallelism - Task superscalar - OmpSs

1 Introduction

Motivated by challenges of increasing frequency of the traditional microprocessors
based on a single processing unit (i.e., physical limit of transistor size, power consump-
tion, and heat dissipation [15,16]), around 2003 the architectures have been shifted to
microprocessors with multiple processing elements known as cores. Nowadays, there
are two kinds of architectures: multi-core and many-core architectures. Multi-core
architectures integrate few cores into a single microprocessor, preserving the execu-
tion speed of sequential programs. Many-core architectures use a large number of
cores oriented to execution throughput of parallel programs.

Regardless of the chosen model, exploiting concurrency consists of breaking a
problem into discrete parts (that can be called fasks when they are composed of sev-
eral instructions), and managing and coordinating them to ensure correct execution,
simultaneously or interleaved in one or more processing units. Although the simple
definition, exploiting concurrency is a difficult and important challenge for current
high-performance systems. Recently, there has been a growing interest in develop-
ing runtime task scheduling techniques due to their flexibility and high- performance
capability. Different dynamic software task management systems, such as task-based
dataflow programming models [3,4,13,28,29], benefit from dataflow principles to
improve task-level parallelism and overcome the limitations of static task manage-
ment systems. These models implicitly perform computation scheduling and data
dependency analysis, thereby the programmer does not need to explicitly manage par-
allelism. In addition, these models use tasks instead of instructions as a basic work
unit.

OmpSs is a general-purpose dataflow task-based programming model that simpli-
fies parallel programmers’ life. It benefits from dynamic data dependency analysis,
dataflow scheduling, and out-of-order executing. OmpSs has been implemented in
software through Mercurium compiler and Nanos++ runtime system. Although the
software implementation is optimized, it introduces some more overhead in task exe-
cution. This limits the efficiency for small tasks which are generated close to each
other [34]. This is a considerable problem that increases with the number of available
cores. In contrast, a tiled hardware task scheduler would be more efficient for small
tasks and would provide larger task throughput.

TSS [9,10] is a hybrid dataflow/von-Neumann architecture [35] that supports
OmpSs programming model as a hardware task scheduler. This architecture takes
benefits of the effectiveness of Out-of-Order processors applied to the task- level par-
allelism of the program. It implements in hardware the task dependency management
and task scheduling functionalities of Nanos++ runtime system, thus results in reduc-
ing the per-task overhead; allowing the efficient exploitation of parallelism at a finer
granularity. In this sense, the TSS processor combines dataflow execution of tasks
with control flow execution within the tasks. The idea behind this behavior is that TSS
uncovers task-level parallelism among tasks generated by a sequential thread similar
to ILP pipelines uncover parallelism in a sequential instruction stream.

@ Springer

Design space exploration of hardware task superscalar... 3569

The initial design of the TSS architecture had only been simulated in software with
limited parallelism and high memory consumption due to the nature of the software
implementation. Although that approach demonstrated the validity of the idea, a real
working proof of concept was beyond the initial study.

This work wants to achieve a realistic Hardware Task Superscalar (HTSS) design,
and provides the prerequisites of the real implementation with all details that arise
in real-world applications. For this, TSS architecture has been re-designed to be
synthesizable in hardware. For the final version of HTSS, we have applied several
improvements to our previous HTSS proposals [37,37]. Evaluation of one version of
hardware implementation of Task Superscalar (called Picos), and also comparison of
Picos with Nanos++ runtime system has been presented in [34]. The main components
of HTSS are more or less the same as Picos, but there are considerable differences
between these two architectures.

The contributions of this article are (1) creating a simulator based on the hardware
implementation of TSS; (2) configuring the simulator with the latency cycles obtained
from simulating of VHDL description of HTSS components; and (3) performing a
rapid design space exploration of HTSS using real benchmark applications. The main
goal of this article is performing design space exploration of HTSS design in order to
determine the number of components and capacity of their embedded memory for our
next plan which is to synthesis the whole HTSS described in VHDL, and implement
and map it on an FPGA.

The remainder of this document is organized as follows: Sect. 2 explains the opera-
tional flow of our final proposal for HTSS architecture and also the latency exploration
of HTSS design as well as the challenges of hardware prototyping. Section 3 describes
our proposed cycle-accurate simulator called SimTSS which is designed for hardware
design space exploration of HTSS. In Sect. 4, the methodology, experimental frame-
work and the benchmark applications are explained. Section 5 presents the design
space exploration of HTSS. The obtained results are presented in Sect. 6 for different
HTSS configurations to determine the best HTSS configuration with the minimum
number of components and the minimum memory capacity that provides maximum
performance. The related work is presented in Sect. 7. Finally, this article concludes
in Sect. 8, by presenting some insights on the results.

2 HTSS overview

For designing the final HTSS, the operational flow of the original TSS architecture
was modified in order to fit the hardware constrains and also to solve some stalls and
simplify some time-consuming operations. More improvements were also applied to
the base HTSS design in order to reduce packet communications and packet processing
cycles. Additionally, the hardware design was improved by reducing the latency of
entering a new task into the pipeline system.

Figure 1 shows the components of TSS and also their equivalents in HTSS. As
the figure illustrates, TSS includes one GW (gateway), several TRSs (Task Reserva-
tion Stations), several OVTs (Object Versioning Tables), and several ORTs (Object
Renaming Tables), and several arbiters and FIFOS, and also one TS (Task Scheduler).

@ Springer

3570 F. Yazdanpanah, M. Alaei

| Task Generator Thread |
|

| Pipeline Gateway (GW)/iGW

[I | .
T] [ORT] [ORT] ORT] | -
]

[
ORT [II{ .
{[O\I’T_—_[_OIVT] [O\IIT—] | ovVT |:—_’__/_
, [TRS TRS] [Tllzs] [Tllt%a:f_'_‘__

() () | (e (@)

TS |7
\

|Pr0cessor| |Processor| |Processor| |Pr0cessor|

lI

Frontend
=
=
wn
(_Aﬁ

Backend

Fig. 1 TSS components and their equivalents in HTSS

HTSS includes one iGW (improved GW), several iTRSs (improved TRS), several
eORTs (extended ORTS), several FIFOs, and arbiters and one TS.

iGW is responsible for controlling the flow of tasks into the pipeline and distributing
tasks to the different iTRS modules, sending parameters to their assigned eORT mod-
ules, and stalling the task generator thread whenever the pipeline fills. iTRSs store
the in-flight task information and track the readiness of task operands. Inter-iTRSs
communication is used to register consumers with producers, and notify consumers
when data is ready. In-flight tasks include (1) the tasks waiting for their parameters
to be ready; (2) ready tasks waiting to be sent for execution; (3) the tasks are being
executed; and finally, (4) the tasks which are finished but still not retired. In HTSS,
the functionality of OVT and ORT modules of TSS are merged into a new module
referred to as eORT. eORT's map parameters that access the same memory object, and
thereby detect task dependencies. Storing information of producer or consumer(s) of
tasks parameters allows the system to maintain the dependence chain with realistic
memory sizes. To keep this chain, eORTs track live operand versions, which are cre-
ated whenever a new data producer is decoded. Effectively, eORT manages data anti-
and output-dependencies by chaining different output operands and unblocking them
in order by sending a ready message when the previous version is released.

Memory components are the most important components of HTSS. Similar to TSS,
in HTSS, there are three kinds of memory modules: task memory (TM), dependence
memory (DM), and version memory (VM). The interconnection network is also an
important component since it can easily limit the scalability of the design. To overcome
the potential limitation problem, the network includes arbiters and FIFOs that decouple
the processing of every component in the system. This kind of network configuration
allows the system to scale easily while preventing the stalls that may happen during
processing a sequence of tasks and their parameters.

@ Springer

Design space exploration of hardware task superscalar... 3571

Depen iGW ORT
iGW 2 ORT
2 e
- e
| cORT
~ |>] eORT g
g | o @
1 Z | &
3 |3
=
o iTRS DropDepen ovT
Depen+Version_id
iTRS OVT 2
4
ez} 3|7
112 I
5 g Rk g
o -
b 4
TS iTRS <—R'"d— iTRS
TS eady

Fig. 2 Operational flow of HTSS, when a task arrives to the pipeline (left), when a task finishes (right)

Another important implementation consideration is minimizing the cycles required
for processing the system packets in order to increase the overall system throughput.
The main functionality of each component is performed by a finite state machine
(FSM). The FSMs are designed to have a minimum number of states; each state takes
only one cycle to be completed. For accessing the memories, one state initializes the
control signals of the memory and the following state performs the memory accessing.

Figure 2 illustrates the HT'SS components and the order of packet passing between
the components for processing an arriving task and also for a finished task. When a new
task arrives to the pipeline, iGW sends it to the selected place of one of iTRSs and sends
its parameters to eORT to be analyzed for data dependency. iTRS allocates a space for
the task and if it has more space for next tasks, it sends a new address to iGW. When
eORT gets a parameter, it updates its entry and creates a new version; or updates an
existing version; or does both depending on the direction of the parameter and whether
the parameter appears for the first time or not. After that, cORT sends the parameter
with the address of the version to iTRS. By this information, the producer/consumer
chain for each parameter is formed. When all of input parameters of a task become
available, the task is ready to be executed, so it is sent to TS.

When a task is finished, the responsible iTRS starts to release the task and its
parameters from TM. For each parameter, it notifies eORT. eORT updates the entries
and counters of the version. If there is no user for the version, the version will be
deleted. Meanwhile, for each of the output parameter the OVT sends a ready message
to the last consumer of the parameter. The consumer TRS while updating its entry,
passes the ready message to the next consumer and the next consumer passes to the
next one until the first consumer gets the ready message.

Algorithms 1 and 2, respectively, describe the operational flow of HTSS when a
new task arrives and when a task is finished. As the algorithms show, HT'SS operational
flow is similar to what we have described in our previous works [36,37] with some
improvements applied to the procedure of communication between iTRSs and iGW.
The improvements cause a task and its parameters are issue faster to the pipeline.

@ Springer

3572 F. Yazdanpanah, M. Alaei

iGW gets meta-data of a task and its parameters;
iGW selects a free iTRS based on round robin algorithm and free slot availability;
iGW sends the task with a slot address to the allocated iTRS;
iGW starts to send the parameters of the task;
if #parameters = 0 then
| iTRS sends the task to execute;
else
for each of the parameters do
if parameter is an scalar then
iGW directly sends the parameter to iTRS;
iTRS saves it in the TM;
else
iGW sends each non-scalar parameter to eORT for data dependency analysis;
eORT saves the parameter in the DM;
if parameter is an input then
if first time then
| eORT creates a version for the parameters in the VM;
else
| eORT updates the current version of the parameter in the VM;
end
else
eORT creates a version for the parameter in the VM;
if NOT first time then
| eORT updates the previous version of the parameter in the VM;
end
end
eORT sends the parameter to iTRS;
iTRS saves it in the TM;
end
end
if all the parameters are ready then
| iTRS sends the task to execute;
end
end

Algorithm 1: HTSS algorithm for processing a new task

Based on these algorithms, we have described each component of HT'SS with VHDL
in order to perform a detailed latency analysis of each component for processing
different kinds of packets. To verify the functionality of each module and to obtain the
latencies, the hardware design has been simulated using ModelSim 6.6d of Alterausing
several bit traces. Those traces represent input packets that test the main and corner
working conditions of the system. The correctness of the output packets generated by
the modules and also the modifications to their related memories have been tested.
Then, we use these latencies to tune the cycle-accurate simulator for design space
exploration of HTSS in a real implementation (Fig. 3).

Table 1 presents the latency (in cycles) required by each FSM to process the received
packets as well as description of the packets and the responsible unit (i.e., the unit that
process the packet). Each module has been tested with all possible different types
of input packets Processmg of each packet, depending on the type of packet, may

another packet. Therefore, processing of a
o & S] g

ers depending on the carried information

Design space exploration of hardware task superscalar... 3573

iTRS releases all parameters and then the task from its memory;
iTRS notifies a DropDepen packet to eORT for each parameter;
if parameter is output then
eORT notifies readiness of the parameter to iTRS which is the top element of the consumer stack;
Last consumer of the processed version will notify next producer (next version);
end
if #users of the version = 0 then
if the version is the last one then
if all other version deleted then

‘ eORT deletes the last version and eORT entry;
end
else
eORT deletes the version;
if all other version deleted then

eORT deletes the last version and eORT entry;

end

end
end
iTRS sends a message to iGW to inform it the freed slot address;

Algorithm 2: HTSS algorithm for processing a finished task

and the internal state of the system. In addition to the latencies shown in Table 1, each
module uses four extra cycles in order to check the input packets, select the one with
the highest priority and initialize its FSM.

3 Cycle-accurate simulator of HTSS

For design space exploration of HTSS, we have designed a cycle- accurate simu-
lator, called SimTSS, based on the functionality of each HTSS components. Figure
3 illustrates the high-level structure of SIimTSS which is a tiled pipelined architec-
ture consisting of one iGW, n iTRSs, n eORTs, one TS, and a network configuration
including several arbiters and several FIFOs. SimTSS is a configurable architecture
that accepts several parameters to simulate a specific HTSS design. These parameters
include the number of iTRSs, the number of eORTs, the number of entries in every
memory, and some configuration parameters of DM that has a set-associative structure.

Similar to HTSS, components of SimTSS communicate to each other using packets
for message passing communication. Each component uses at least one FSM for
processing input packets and producing output packets, as well as accessing to the
memory units. The components of SimTSS are interconnected by several FIFOs and
arbiters that are scaled in accordance with the rest of the modules. Note that the network
configuration decouples the work in the modules reducing stalls in the system.

The amount of parallelism that the HTSS pipeline can uncover depends on the
capacity of the memories used for storing task information, their parameters, and the
versions of these parameters. On the other hand, the performance of the HTSS archi-
tecture depends on both the capacity of the memories and the number of components.

The TM is embedded into iTRS module while both DM and VM are placed in
eORT module. As it was mentioned, iTRSs keep the information of all alive tasks

@ Springer

3574 F. Yazdanpanah, M. Alaei

from TRSs

from iTRSs

[v] eorro [[V ot [v]0]] [5v] cortna [][]
l ¥

from GW

from iTRSs from eORTs from iTRSs

%.é & ... él %.é & .. S

arbiter arbiter arbiter | | arbiter | arbiter | | arbiter |

= = = =
CT me 1] B _ms 1] - O] wsws [
1 — 1

,ﬂ],_

Arbiter (splitter)

Fig. 3 High level description of SimTSS

(in-flight tasks) in the pipeline. However, it should be emphasized that TMs size does
not exclusively determine the effective number of in-flight tasks, as this number might
be limited by the number of entries of VM and DM. eORTs maintain an entry for each
parameter used by in-flight tasks in the DM, and the corresponding version(s) of that
objects in the VM. As such, the number of entries they can store affects the number
of in-flight tasks.

Table 2 lists the input parameters of SimTSS. In the simulator, it is possible to select
any number of iTRSs and eORTs, as well as any number of entries for the different
types of memories (i.e., TM entries, DM entries, and VM entries). In addition, since
the DM has been designed as a set-associative memory, it has two more parameters
to be determined: the number of ways and the access mode. Access mode determines
whether DM uses the bit-based mapping (standard) hash function or an improved
hash function for distributing parameters in DM. As it will be shown later on, the hash
system is a critical point in the system as it significantly reduces system stalls caused
by several parameters with the same index trying to be placed in the same DM set
(DM memory conflicts).

The configurable simulator allows to deeply evaluate the number of components
and memory entries of HTSS suitable for different systems. Therefore, it can be found

@ Springer

Design space exploration of hardware task superscalar... 3575

Table 1 Latencies of processing the packets

Packet Description Processing latency Responsible
unit
Contlssue Notifies the GW that an space 2 cycles iGW
in the iTRS memory is
available.
DataReady Notifies another task(s) thata 2 cycles iTRS
parameter is ready.
DepeneORT Includes a non-scalar —2 cycles if the (input or output) eORT
parameter for data dependence appears for the first time

dependency analysis.

—3 cycles if the dependence is input and
does not appear for the first time

—4 cycles if the dependence is output
and does not appear for the first time

DropDepen Is sent for informing the 2 cycles eORT
releasing of the parameter.

DropVersion s for getting the permission —2 cycles for deleting the last version eORT
of releasing a version.

—3 cycles for deleting the last version
and the previous one

Execute Includes the meta-data of a 1 cycle (for loading meta-data of a task) iTRS
ready task for executing. +2 cycles for loading every
dependence fromTM +1 cycle for
sending the task to the TS

Finish Notifies TRSs that execution 3 cycles +2 additional cycles for loading ~ iTRS
of the task has been finished every dependence from TM
Issue Includes meta-data of a task. —4 cycles for tasks without any iTRS
dependence

—3 cycles for tasks with at least one
dependence +2 additional cycles for
every dependence

that an HTSS configuration with the minimum number of components and memory
entries provides maximum performance for a given amount of processing resources.

Figure 4 shows the workflow of SimTSS usage. Based on that, SimTSS gets an input
configuration file which initializes its parameters (i.e., number of workers, number
of iTRSs, number of eORTs, and number of memory entries and parameters), and
selects an input trace. The input trace includes data and meta-data of tasks including
task identifiers, execution cycles, and number of parameters, direction of parameters,
and issue time of each task that are obtained by instrumentation source code of the
applications. When the execution of a trace is completed, SImTSS reports finished
time of each task, total number of required cycles, and some statistics that have been
used in the design process.

For generating the traces, the cycle counters of the target processor have been used in
i xecuting each task, the cycle in which the task
r completing all tasks of an application. In

EEN T fyl_i.lsl Qs

3576 F. Yazdanpanah, M. Alaei

Instrument the source code of an application in order to get the number of cycles
of CPU clock: number of executing cycles and initialization cycles for each task

and total number of cycles for the sequential execution

|

Save data of tasks (a trace) in a file including: ID, Exe. cycles, number and

direction of dependences and initial time

Initialize a file for SimTSS, including number of workers, iTRSs, eORTs, DM

ways and mode of hash + benchmark trace file

I

Run SimTSS and get total number of executing cycles, number of conflicts and

finished time for each task

Fig. 4 Workflow of SimTSS usage

Table 2 Parameters of SimTSS SimTSS Parameters Description

#iTRSs Number of iTRSs that can be any number
between 1 to n

eORTs Number of eORTs that can be any number,
power of two, between 1 to n

TM entries Number of in-flight tasks per iTRS

VM entries Number of versions that the system can keep
per eORT

DM entries Number of dependencies that the system can
keep per eORT

Ways Number of ways in each set of the DM
(Associativity of DM)

DM access mode Selecting standard hash or the improved
SimTSS hash

Workers Number of available workers

fact, the total number of cycles of executing tasks is equal to the sequential execution
of the application. It is noticeable that the number of cycles used for instrumenting
instructions is not accounted in the total number of cycles.

4 Methodology and experimental frameworks for design space
exploration

4.1 Methodology

By modifying the parameters of SimTSS, different HTSS configurations have been
examined to find the best configuration for HTSS that provides the highest perfor-

vorkers) with employing minimum hardware
') Spring
|| B zy

s and eORT's has been explored for each

Design space exploration of hardware task superscalar... 3577

benchmark considering different number of workers. The distributed design of the
pipeline facilitates speeding up the overall decode rate, by overlapping the different
works of managing task dependencies and decoding tasks. Specifically, replicating
eORTs enables multiple dependencies to be recorded in parallel, whereas iTRS repli-
cation reduces the per-TRS load and distributes iTRS loads, and thereby increases the
overall processing rate of inter-iTRS communication.

At the start point of design space exploration (Phase I), it is assumed that there
are unlimited resources available for prototyping HTSS. Based on this assumption, a
design with a lot of number of components and a lot of number of memory entries is
used. With this configuration (referred as BigConf), the minimum number of workers
that provides maximum performance is determined for all the benchmarks. Then, using
the minimum number of workers, the minimum number of entries for each memory
and the minimum number of modules that allow to obtain this maximum performance
is determined. At the end of this phase, a design configuration which provides high
performance is obtained, called HPCConf. Using the results of Phase I (BigConf and
HPCConf), in Phase II, an HTSS with limited number of workers (i.e., 32 workers)
is explored. In Phase III, different aspects of HTSS are studied, compared to the
Parallelism and ZeroHTSS systems.

In the Parallelism system, an ideal design with any number of components and
memory entries, that provides the highest possible speed- up, is used. The goal of
this system is to show the performance of the system compared to different HTSS
configurations for a given application. The performance provided by the Parallelism
system does not depend on the number of workers or the number of HTSS components
and memory entries. It only depends on input trace and, in fact, the critical path of
an application limits the Parallelism system to provide infinite performance. Indeed,
Parallelism=T;/ T, where Tj is the sequential time and T is the time of the criti-
cal path in the parallel strategy supposing infinite resources. On the other hand, the
ZeroHTSS system is an HTSS with unlimited number of resources, where packets
are processed in each FSM of the component immediately (in zero cycles). Those
two ideal approximations, the Parallelism and the ZeroHTSS systems, will be used
to highlight the strength of the HTSS system and provide some insights for future
improvements.

4.2 Benchmarks

In order to evaluate the capabilities of the HTSS, a group of real applications has been
selected. All the applications can be obtained from the BSC Application Repository
(BAR) [5]. The applications have been annotated with OmpSs pragmas to determine
the tasks and their parameters. For every task, one pragma specifies the parameters
and their directions (i.e., input, output, and in-out). With this information, the source
code of the selected applications has been instrumented to generate the traces used as
input data to SimTSS. Here, the selected applications are shortly described:

Cholesky factorization The Chol esky factorization decomposes a symmetric, pos-
itive definite matrix A = L L', with L lower triangular. This distribution includes three

@ Springer

3578 F. Yazdanpanah, M. Alaei

different variants of the Cholesky decomposition. We have selected the 11chol
variant which is the left-looking variant, as implemented by the routine DPOTREF() in
LAPACK.

LU factorization The LU factorization decomposes an mxn matrix (m should be
larger or equal n) A = L x U, with L unit lower triangular (mxn) and U upper
triangular (nxn).

SparseL.U decomposition This application as the above one, performs an LU decom-
position, but over a square sparse matrix. The matrix is allocated by blocks of
contiguous memory.

Heat diffusion This is an implementation of an iterative solver for Heat distribution.
There are three user-selectable algorithms: Jacobi, Gauss-Seidel, and Red-Black. For
this work, the Gauss-Seidel method has been selected.

4.2.1 Traces descriptions

Table 3 presents the characteristics of the benchmark applications. It includes the
input configuration, number of tasks, and average of task sizes as well as maximum
and minimum task size for each benchmark. In addition, it presents average number
of parameters, average tasks distance, and sequential execution cycles.

Input configuration of the applications in Table 3 states the parameters that have
been chosen for running each application. It is important to mention that the con-
figuration has been selected for stressing HTSS system. Note that those are not the
best configurations to solve the problem in a sequential system, but generate several
small tasks issued as fast as possible. In other words, the configuration parameters of
the benchmarks were chosen trying to obtain executions that generate several short-
distant, fine-grained tasks. The execution time obtained for the given problem size
was not a concern in this point as the experiments try to measure the ability of the
hardware to manage tasks. The size of a task is measured as the number of cycles that
are used for executing it. This number directly depends on the amount of computa-
tion that should be carried out for each task. Task distance is the number of cycles

Table 3 Information of benchmark traces

Application Cholesky SparseLU Heat LU

Input configuration 100,2 64,8 256,32 256,1
Number of tasks 22100 11472 1025 32896
Average task size (in cycle) 778 9835 1116 1970
Max task size (in cycle) 84704 147148 3124 229924
Min task size (in cycle) 416 3344 24 488
Average number of parameters 2.88 2.90 4.996 2
Average task distance (in cycle) 31.06 139.06 39.63 24.78
Sequential execution cycles 19942850 114419887 1184928 65601061

@ Springer

Design space exploration of hardware task superscalar... 3579

between the arrivals of two successive tasks. In the table, the average of tasks distance
is presented. Sequential execution cycles states the number of cycles required in the
sequential execution of each application.

Here, the different input configurations are described. Those configurations have
been selected in order to have large number of small tasks that are issued close to each
other. For Cholesky, 100 is the size of the matrix, and 2 is the size of the block.
Therefore the number of blocks is equal to 50. For SparseLU, the first number is the
number of blocks in each matrix dimension. In Table 3, the matrix has 64 x 64 blocks.
The second number of this application is the block size in each block dimension (8 x
8 blocks in the table). For LU, the first number is the number of rows and columns of
the matrix (dimensions of the matrix) and second one is the number of columns in a
panel. In the case of Heat, the first number determines the matrix size and the second
one is the number of blocks in each matrix dimension.

The number of tasks and average of task sizes as well as maximum and minimum
task size for each benchmark are presented. We compute average tasks distance as
((initial time of last task—initial time of first task)/number of tasks). As average task
distance shows, compared to the average task sizes, the tasks are really close to each
other, especially for Cholesky, LU, and Heat applications. On the other hand, as
SparseLU operates on a sparse matrix, it has a greater number of cycles between
two successive tasks.

Finally, the sequential execution cycles number is a baseline number for comparing
results of SimTSS with. For SimTSS analysis, speed-up results are presented. Those
values of speed-up are obtained by comparing the sequential baseline execution of
an application to the simulation of the input trace of that application, with the same
application parameters (i.e., speed-up = sequential execution cycles/SimTSS execu-
tion cycles). Note that each task execution in the simulator lasts the same number of
cycles than the sequential task execution.

5 Design space exploration of HTSS

In this section, exploring the design space of the HTSS using the software simulator
(SimTSS) is presented. The main goal is to explore which amount of resources (i.e.,
number of iTRSs, number of eORTs, capacity of TM, VM, and DM, and also suitable
structure of DM) is necessary for exploiting emerging many-core designs. For this,
the results obtained from running the benchmarks on SimTSS are presented. Then, the
number are evaluated in order to find a suitable configuration of the HTSS prototype
for different performance configurations.

5.1 HTSS for high-performance computing systems

For determining the minimum number of workers, a very big configuration of the
HTSS system with a lot of resources is assumed. This configuration is called BigConf
that has 32 iTRSs, 32 eORTs, 16K capacity for all memory modules, and DM with
16 ways. For each configuration parameter, a large number is selected in such a way
that even if the value is halved the time results of the system remain the same. Using

@ Springer

3580 F. Yazdanpanah, M. Alaei

60 1
50
—&— Cholesky

40 —#— SparselLU
[}
3 —a— Heat
§ 301 —e—LU
o
(/2]

20 A

10 1

0

1 2 4 8 16 32 64 128 256 512 1024 2048
Number of workers

Fig. 5 Summary of speed-up of an HTSS with a lot of resources

BigConf, the number of workers that provide maximum speed-up can be determined.
To do this, first, the minimum number of workers that provides the highest speed-up for
each benchmark is found, and then the maximum number across all the applications
is selected.

Figure 5 presents the speed-up (Y-axis) obtained executing the traces of the four
benchmark applications on SimTSS with a lot of resources for different number of
workers (X-axis). As the figure shows, the speed-up increases by increasing the number
of workers. Of course, the diagrams become flatten when we reach a certain number
of workers; this number is 64 for Cholesky, 256 for SparseLU, 32 for Heat,
and 128 for LU. Therefore, 256 workers (processors) are enough for an HTSS system
suitable for task scheduling of HPC applications.

SparseLU provides the highest speed-up compared to the other selected applica-
tions, because it has more than ten thousands big tasks which are more or less far from
each other. Moreover, sequential execution of SparseLU takes a large number of
cycles. But, since SparseLU works on sparse matrices, it has the highest potential of
parallel execution on many-core systems with high performance among other selected
applications.

Heat has few numbers of tasks, with five parameters in average for each task. The
tasks are small and close to each other. Every 255 consumers in Heat are related to
one producer, this matter causes restrictions for parallel execution of this application.
In addition, the serial section of Heat that limits parallel execution is considerable.
Hence, we have got the least speed-up for Heat in all of our experiences for these four
benchmark applications.

Compared to the other selected applications, LU has a lot of small tasks. Parallel
execution time of LU is almost one third of its sequential execution; but, because
of data dependency of small tasks having small average task distance, its speed-up
diagram is flattening when more than 128 cores are available.

ize, and its tasks are much closed to each other.
oops. On the other hand, data dependency

Design space exploration of hardware task superscalar... 3581

60 -
—&— Cholesky
50 A —@— SparselLU
Heat
40 —eo— LU
o
3
?
3 30 1
o
(/]
20
10
0

8 16 32 64 128 256 512 1024 2048 4096 8192 16384
Number of TM entries

Fig. 6 Speed-up obtained as a function of the number of TM entries

of consecutive tasks and also existence different kinds of tasks with different sizes
are usual in this application. Therefore, a lot of restrictions in parallel extraction are
yielded although there are unlimited resources available.

Once the minimum number of workers is determined, we have to reduce the amount
of resources which has been allocated to BigConf while maintaining the performance.
Considering 256 workers and only one iTRS, we have changed number of TM entries
in order to find the minimum TM entries that provides highest performance. All the
other parameters are the same as in the BigConf configuration. The results are shown
in Fig. 6 (Y-axis shows the speed-up over the sequential execution, and X-axis is the
number of TM entries). For the selected traces, 1024 TM entries (the same as number
of in-flight tasks) seem enough when the system has only one iTRS. But comparing
to values of speed-up observed in Fig. 5, we have obtained less values of speed-up,
particularly for Cholesky benchmark. This happens because of having only one
iTRS module in the system. Regardless of the TM size, the time that iTRS uses to
process the tasks may become the bottleneck of the system. That can be solved by
increasing the number of modules of HT'SS, hiding the latency of iTRS processes, and
distributing 1024 TM entries over them.

Figure 7 shows how changing the number of iTRSs and its memory size influences
the number of cycles for the applications. As it can be seen, the optimum design point
is to have eight iTRS modules with the capacity to store 128 tasks each (or even
eight iTRSs with 512 TM entries), for the Cholesky benchmark. However, that
configuration is only ideal for the specific case of Cholesky and presents serious
drawbacks from the hardware resources point of view: eight iTRS modules represent
a large interconnection network and, furthermore, 4K in-flight tasks demand roughly
240KBytes of memory storage for the tasks and more space in the other memories that
should be scaled accordingly. Considering both the results of Figs. 6 and 7 for all the
benchmarks and the hardware resources requirements of an eight-TRS configuration,
the selected prototype has been limited to four iTRSs with a 256-entry TM each,

@ Springer

3582 F. Yazdanpanah, M. Alaei

60 1 —&— Cholesky
— el —— SparseLU
(- —— P
50 A —#— Heat
—o— LU
40 A
o
2
2
3 30 H -
) ® —
20 A
10 4 R
0 T T |
1-ITRS, 1024 2-TRS, 512 4-TRS, 256 8-iTRS, 128
entries entries entries entries

Fig. 7 Speed-up as a function of the number of iTRSs and TM entries

reducing the interconnection network and memory requirements, while guaranteeing
high speed-up.

After selecting iTRS modules configuration, the next step is to select a good eORT
modules configuration. This work is more difficult as the eORT module is more com-
plex with two different memories and its effect on the system performance is not so
obvious. As explained before, the eORT modules keep track of the dependency chain
and to do so, they have to store both all the dependencies (parameters) of all the tasks
in the DM and all the versions of those dependencies (the different values that the
dependency can have due to the different in-flight tasks that produce this value) in the
VM.

Like TM, VM is used in an indexed way, so, any value can be stored in any entry
with direct memory access. Figure 8 shows the speed-up obtained for each benchmark
when the number of VM entries is varied and we have only one eORT module. Asitcan
be seen in the figure, the Cholesky application is, as in the case of the TM, the most
demanding one, needing 4096 entries in the VM to achieve the peak performance.

Considering that number of VM entries, we show in Fig. 9 how changing the
number of eORT modules affects the speed-up when the total number of VM entries
is maintained constant and the DM is kept at its large value. In particular, it can be
observed that four eORTs with 1024 VM entries each (for a total of 4096 versions)
achieves the upper limit of the performance.

DM has been designed as a set-associative memory and is more complex than TM
and VM, so, it is the key element in eORT module. When a parameter enters the
system, it should efficiently find if the parameter is new or not, and update its meta-
data correspondingly. However, the DM is not a cache and when a block in the DM
is full, the system cannot replace and flush the existing entry. Instead, it should stall
and wait until the parameter that uses the same entry is no longer alive. The reason

lated because of the data alignment in the
s & S] g

Design space exploration of hardware task superscalar... 3583

60
Lt Lk {3 & #l —&— Cholesky
50 A —— SparselLU
~A—Heat
40 | —e—LU
Qo
?
® 30
(]
Qo
(2]
20 A
10 1
0 - !

8 16 32 64 128 256 512 1024 2048 4096 8192 16384
Number of VM entries

Fig. 8 Speed-up obtained as a function of the number of VM entries

60 -
[o — . = . a| ~—4&— Cholesky
50 4 —— SparselLU
~#&— Heat
40 | —e—LU
Q
7
T 30
3 ® °
(7]
20
10 p——— & & 4 A
0 . .
1 2 4 8 16 32
Number of eORTs

Fig. 9 Speed-up obtained as a function of the number of eORT modules

application tasks. Therefore, when storing them in the corresponding DM, several
consecutive parameters may be stored in the same entry of DM. As the DM cannot
discard entries, until the previous parameter is deleted from the pipeline when all the
tasks that use it finishes the requester parameter(s) and its tasks have to wait. This
may cause large stalls if DM is implemented as a direct-mapped memory or if the
hash function does not appropriately randomize the addresses of the parameters. For
this reason, an associative memory, and a more complex hash function (Pearson-like
hash [27]) than the usual (address less significant bits—LSB hash in Fig. 10) is used
to select the set.
Figure 10 shows the effect of the Pearson-like hash function on the speed-up
ine i e DM entries comparing to LSB-hash func-
sh function has better speed-up for all the

@ Springer

3584 F. Yazdanpanah, M. Alaei

Cholesky SparselLU
60 1
50
o 40 4
3
8 30
by
20
10 NN
0 -+
8 16 32 64 128 256 512 1024 2048 4096 8 16 32 64 128 256 512 1024 2048 4096
Number of DM entries B LSB Hash M Pearson-like Hash
Heat LU
60
50
a 40
I
d 0
o
»n
20
10
0

8 16 32 64 128 256 512 1024 2048 4096 8 16 32 64 128 256 512 1024 2048 4096

Number of DM entries M LSBHash M Pearson-like Hash

Fig. 10 Speed-up obtained as a function of the DM entries with LSB and Pearson-like hash

cases or, from another point of view, allows the system to obtain the same results
with a smaller number of DM entries. While the LSB-hash function only uses the less
significant bits of parameter addresses to distribute them between eORTs and in the
DM memory, Pearson-like hash function improves the distributions. The rest of the
results presented in this section uses the improved hash. Figure 10 also shows that 32
entries (with 16-way set associative each) for DM is enough to obtain the upper limit
performance for the studied benchmarks.

Selecting memory associativity is also a key for the performance. The ideal would
be having a full associative DM, but this is not possible in a real environment. In
SimTSS, we can configure DM with different number of ways. Therefore, the effect
of having different associativities with the Pearson-like hash has been studied and it is
shown in Fig. 11. This figure shows that using a larger number of ways results in only
a little higher speed-up maintaining the total amount of memory, but with much more
hardware resources and a more complex DM structure. Hence, a four-way structure
seems fine to provide good performance results with reasonable amount of hardware
usage. It is noticeable that the DM structure is the main difference between HTSS and
Picos. HTSS will utilize less logic than Picos [34] because of its smaller and simpler
set-associative memory unit.

In conclusion, the proposed configuration for an HTSS design is composed by ten
modules: one GW, four iTRSs, four eORTs, and one TS unit. EachiTRS has a 256-entry
is an indexed array of 512 entries while
ry with 128 entries. This configuration is

Design space exploration of hardware task superscalar... 3585

60
s
_g 40 B Heat
(7
& 20 SparseLU :f;olesky
LU
Cholesky B SparselLU

0

4-way, 64 Heat

8-way, 32
16-way, 16
DM Configuration

Fig. 11 Speed-up obtained as a function of the associativity of the DM

an HPC configuration of HTSS (called HPCConf) that provides maximum speed-up
while utilizing a minimum amount of resources for up to 256 workers.

It should be mentioned that both HTSS and Picos have improved gateway (iGW)
and improved TRSs (iTRSs), so they act very similar in values of speed-ups obtained
from the similar experiences in design space exploration except for DM parameters.
In HTSS, DM is a four-way set-associative memory, while Picos has an eight-way
set-associative DM, hence, HTSS DM utilizes almost half of memory modules of
dependence memory of Picos. In addition, the control unit of DM in HTSS is simpler
than that of Picos. This is the main difference between Picos and HTSS architectures.

In addition, we have improved network configuration of HTSS by reducing its
utilized hardware resources, so it has less logic in communication network than Picos.
Albeit, this improvement has not considerably affected the network level (i.e., number
of FIFOs and arbiters in critical path between the main components in both system
is the same), therefore there is no reduction in communication latency and obtained
speed-up in HTSS compared to Picos.

5.2 HTSS design with limited workers

In this section, HTSS is analyzed with a more limited number of workers to evaluate
the results obtained from the previous section, and find a suitable configuration for
smaller systems like the ones that can be found nowadays. For this, it is assumed that
the selected design has only 32 available workers and an HTSS with four iTRSs and
four eORTs. The goal is to repeat the study of the effect of different memory sizes on
performance but with limited resources in order to find out the minimum number of
memory entries for an HTSS configuration for current parallel systems.

Figure 12 shows the effect of different number of TM entries on performance when
there are 32 workers, four iTRSs, and four eORTs. In particular, it can be seen that
256 entries are enough for TM of each iTRS when it is used in conjunction with a 64-
ike hash in each eORT. Figures 13 and 14 show
and DM entries, respectively. Both figures

@ Springer

3586 F. Yazdanpanah, M. Alaei

30 .
i —— Cholesky
25 - - - " —— SparselLU
g * * * ® A Heat
20 —o—LU
Q
35
[
[
Q. s s s s A
» 10
5
0

8 16 32 64 128 256 512 1024 2048 4096 8192
Number of TM entries

Fig. 12 Effect of different number of TM entries on the performance of an HTSS with 32 workers

30 - 5
| ~—&— Cholesky
= = = 2
25 | —#— SparselLU
® ¢ ¢ ® —4— Heat
20 4 o ® —o—LU
o
3
T 15 1
[
o
Q
? 10
5
0

8 16 32 64 128 256 512 1024 2048 4096 8192
Number of VM entries

Fig. 13 Effect of different number of VM entries on the performance of an HTSS with 32 workers

show eORT memories effect on the performance of HTSS with only 32 processors.
Results in Fig. 13 indicate that 512 entries should be selected, as a good size versus
performance trade-off for VM entries. This is also the same number of VM entries
that was found in the previous study in Sect. 5.1. In the case of Fig. 14, it can be seen
that a 64-element four-way DM with Pearson-like hash is enough for each eORT, also
as found in previous analysis in Sect. 5.1. As a result, the best configuration for using
HTSS with a current system (with up to 32 cores) is four iTRSs with 256 entries for
TM, and four eORTs with 512 VM entries and 128 DM entries for four-way DMs
with improved hash. This architecture is able to store up to 1024 in-flight tasks in
iTRSs, 2048 versions, and 2048 parameters in eORTs. Note that the total sizes of the
memories depend on the word-size of each memory.

are is necessary to manage 256 or 32 workers.
') Spring
o G zy

e, it is due to the fact that memory sizes

Design space exploration of hardware task superscalar... 3587

30 i
! —&— Cholesky
—i = = & & & 4
| —— SparseLU
25
¢ ¢ ¢ ¢ ¢ ¢ ® —4—Heat
20 7 - > © ® © ° ° ° ® ——w
Q.
3
T 15
Q
[
Q.
MR
<
5 4
4
0

8 16 32 64 128 256 512 1024 2048 4096 8192
Number of DM entries

Fig. 14 Effect of different number of DM entries on the performance of an HTSS with 32 workers

are necessary to discover enough parallelism in the applications while the number of
modules is necessary to keep pace with the task issue rate. Both factors depend mainly
on the applications, not on the available number of workers. However, it can be seen
in Figs. 12, 13, and 14 that with 32 workers the system gets a maximum speed-up of
about 27 x, while for 256 workers, a speed-up up to 56x can be obtained.

6 Results of the design space exploration

In this section, the selected different configurations of HT'SS: HPCConf, MinConf, and
BigConf are evaluated. MinConf is an HTSS with minimum resources (i.e., one iTRS
and one eORT) for small many-core systems with eight workers which is similar
to MinConf of Picos [34]. In this article, we ignore the explanation of analysis on
MinConlf.

To obtain a good idea of how well the proposed final systems behave, they have
been evaluated with a different number of processors comparing the obtained values
of speed-up to two control configurations: Parallelism and ZeroHTSS systems (see
Sect. 4). For each of the benchmarks, Fig. 15 shows the maximum speed-up that can
be obtained with the chosen parallelization strategy of each benchmark. Figure 15
also shows the results that would be obtained with an HTSS that uses zero cycles
to process any packet (ZeroHTSS), the results obtained from BigConf, the HTSS for
high performance computing systems (HPCConf), and the minimum configuration of
HTSS (MinConf).

As it can be observed in Fig. 15, HPCConf performance is almost the same as
ZeroHTSS system for all the benchmarks. Only for Cholesky a small slow-down
can be appreciated as a trade-off of downsizing the resources. Also for systems with
a small number of processors (up to eight), MinConf is able to keep pace and so, it
would be enough and affordable to be implemented in embedded systems.

i e 1e hown in Fi to the Parallelism configuration, it can be
act all the possible parallelism for three of

1 ** I lh .
|:.1 b])u AJ I @Sprlnger

3588 F. Yazdanpanah, M. Alaei

60 ~
Cholesky)
50 A —&— Parallelism
—— ZeroTSS
40 A
=3 BigConf
3
E 30 A N N . . N . 1 —&— HPCConf
g. 20 A —&— MinConf
(72}
10 A : L L L L - A
0)
1 2 4 8 16 32 64 128 256 512 1024 2048
Number of workers
SparseLU
60 4
50 4 —&— Parallelism
o —— ZeroTSS
3 40 .
T BigConf
@
8- 30 1 —o6— HPCConf
@ 20 A —&— MinConf
10 1
0)
1 2 4 8 16 32 64 128 256 512 1024 2048
Number of workers
60
Heat
50 —&— Parallelism
[}
3 40 —&— ZeroTSS
° .
o 30 BigConf
& —o— HPCConf
20

—#— MinConf

1 2 4 8 16 32 64 128 256 512 1024 2048
Number of workers
60 -
LU X

50 1 —— Parallelism
= —o— ZeroTSS
3 40
S .
8 BigConf
(% —e— HPCConf

—#&— MinConf

o f - - - .
1 2 4 8 16 32 64 128 256 512 1024 2048

Number of workers

Fig. 15 Speed-ups obtained for different number of workers of the Parallelism, ZeroTSS, BigConf, HPC-
Conf, and MinConf configurations

the four benchmarks once a certain number of workers is reached. The only exception
is for the LU application which can obtain the maximum speed-up with the ZeroHTSS
implementation, but not with HPCConf or even with the BigConf. The difference in
performance here is due to the large dependency chains of consumers (255 for each
\wakening 255 consumers means creating

Design space exploration of hardware task superscalar... 3589

a sequential chain of 255 packets between iTRSs and, consequently, when the last
consumer is awakened several cycles have been wasted. To improve this, it can be
proposed a system that simply creates a new version of a parameter when several
consumers are detected. This new version awakens at the same time as the original
one and splits the chain of packets into two different and parallel chains. However, this
improvement has not been implemented as with more realistic task sizes this behavior
will disappear by the longer task execution times.

7 Related work

Different dynamic software task management systems such as runtime systems have
been proposed to overcome the problems of static task management systems. In partic-
ular, task-based dataflow programming models automate data dependency and solve
the synchronization problem of static task management systems. Main examples of
this class are StarSs family [3,4,28] (including OmpSs [6,8]), OoOJava [12,13], JADE
[18,29-31], and OpenMP 4.0 [25]. These models try to support dynamic task creation
and scheduling with a simple programming model [4]. However, their flexibility comes
at the cost of a rather laborious task management that should be done at runtime [2].
The cost of that potentially huge task management affects the scalability and perfor-
mance of such systems, and limits their functionality to applications with a lot of
tasks.

The main purpose of a hardware task scheduler is accelerating the task manage-
ment. The parallel program will continue calling the programming model software
runtime, but this will subministrate the task dependency information to the hardware
task scheduler. The hardware scheduler will gradually and efficiently create the task
dependency graph while preparing the ready tasks for execution on the cores.

Some hardware support solutions for task scheduling [7,11,17,19,22,26,33] have
been proposed to speed-up the task management but most of them only schedule inde-
pendent tasks, leaving it to the programmer to deliver tasks at the appropriate time.
Several research studies evaluated hardware task queues [11,17]. In these studies,
task submission to a particular core is accelerated by hardware task queues, replacing
software data structures and leveraging the corresponding synchronization overhead.
However, in most of the cases, inter-task synchronization is still performed in software.
Saez et al. [32] describe a hardware scheduler accelerator that combines scheduling of
soft and hard real-time jobs on an uni-processor. In contrast, Al-Kadi and Terechoko
[1] propose a video scheduler that tackles the task scheduling problem for a multi-
core, involving complex task-to-core mapping. Furthermore, their task scheduler can
create task dependency graphs. Other architectures, such as NVIDIA Tesla [19], are
also known to provide hardware acceleration for task scheduling of independent tasks.
Sjalander et al. [33] propose a programmable task management unit (TMU) acceler-
ates task creation and synchronization in hardware. TMU runs a look-ahead program
preparing tasks that will become ready in a short while. However, for fine-grain tasks
executing for a few tens of cycles, it is needed a faster task scheduling. In order to
achieve lower overhead,in.this work.itis.designed as a dedicated hardware task sched-

@ Springer

3590 F. Yazdanpanah, M. Alaei

uler to efficiently manage the task creation, scheduling, mapping, and synchronization
of the tasks.

Dynamic scheduling for system-on-chip (SoC) with dynamically reconfigurable
architectures is interesting for the emerging range of applications with dynamic behav-
ior such as the work of Noguera and Badia [23,24]. Kalra and Lyseeky [14] addressed
the relationship between the several hardware task scheduling algorithms and their
impact on the number of reconfigurations required to execute.

TSS architecture [9,10] has been designed as a hardware support for the OmpSs
programming model [8] for scheduling all dependent and independent tasks. Unlike
Noguera’s work, the task dependency graph is dynamically created and maintained
using runtime data flow information, therefore increasing the range of applications that
can be parallelized. The TSS architecture provides coarse-grain parallelism manage-
ment through a dynamic dataflow execution model. In addition, it supports imperative
programming on large-scale CMPs without any fundamental changes to the micro-
architecture. Based on TSS, we have designed different versions of hardware Task
Superscalar [36,37]. Evaluation of hardware design of Task Superscalar compared to
Nanos++ runtime system has been presented in [34].

Nexus++ [20,21] is another hardware task management system designed based on
StarSs that is implemented in a basic SystemC simulator. Both designs leverage the
work of dynamically scheduling tasks with a real-time data dependence analysis while
maintaining the programmability, generality, and easiness of use of the programming
model.

8 Conclusions

The goal of this article was to propose a hardware design of the TSS architecture, a
hybrid dataflow task scheduler proposed to accelerate the execution of applications
annotated with the OmpSs programming model. To this end, once the potential benefits
of a hardware task manager have been discussed, the operational flow of final HTSS
architecture has been presented. This architecture is a new and more realistic hard-
ware implementation of TSS that significantly reduces processing time and hardware
resource usage over the initial proposal. Components of the HTSS have been coded in
VHDL in order to obtain real-time constraints of such system for latency exploration.
Based on the VHDL implementation of HTSS modules, a cycle-accurate software
simulator has been developed in order to further improve HTSS design by detecting
and correcting the system bottlenecks and perform a full design space exploration of
areal and full hardware prototype.

As a result of this article, a realistic and implementable hardware prototype of an
HTSS consisting of 10 modules (one gateway, four dependency chain trackers, four
task reservation stations, and one scheduler) has been proposed. The proposed design
has demonstrated its ability to deal with systems that manage up to 256 processors
with a set of real benchmarks. The results show that the final HT'SS system can obtain
values of speed-up closer to the maximum of the parallelization strategy of the analyzed
applications (up.to 100 in the tests) using a reasonable amount of memory (less than
100 KB).

@ Springer

Design space exploration of hardware task superscalar... 3591

References

10.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

. Al-Kadi G, Terechko AS (2009) A hardware task scheduler for embedded video processing. In:

Proceedings of the international conference on high performance and embedded architectures and
compilers (HIPEAC), pp 140-152

. Badia RM (2011) Top down programming methodology and tools with StarSs, enabling scalable

programming paradigms: extended abstract. In: Proceedings of the workshop on scalable algorithms
for large-scale systems (ScalA), pp 19-20

. Bellens P, Perez JM, Cabarcas F, Ramirez A, Badia RM, Labarta J (2009) CellSs: scheduling techniques

to better exploit memory hierarchy. Sci Program 17(1-2):77-95

. Bellens P, Perez J, Badia R, Labarta J (2006) CellSs: a programming model for the cell BE architecture.

In: Proceedings of the supercomputing (SC). ACM, New York

. Bsc application repository, bar (2014). In: Barcelona Supercomputing Center (BSC). https://pm.bsc.

es/projects/bar. Accessed 06 Feb 2014

. Bueno J, Martinell L, Duran A, Farreras M, Martorell X, Badia RM, Ayguade E, Labarta J (2011)

Productive cluster programming with OmpSs. In: Proceedings of the International conference on
parallel processing (Euro-Par), pp 555-566

. Castrillon J, Zhang D, Kempf T, Vanthournout B, Leupers R, Ascheid G (2009) Task management

in MPSoCs: an ASIP approach. In: Proceedings of the international conference on computer-aided
design (ICCAD), pp 587-594

. Duran A, Ayguade E, Badia RM, Labarta J, Martinell L, Martorell X, Planas J (2011) Ompss: a proposal

for programming heterogeneous multi-core architectures. Parallel Process Lett 21(2):173-193

. Etsion Y, Cabarcas F, Rico A, Ramirez A, Badia RM, Ayguade E, Labarta J, Valero M (2010) Task

superscalar: an out-of-order task pipeline. In: Proceedings of the international symposium on microar-
chitecture (MICRO), pp 89-100

Etsion Y, Ramirez A, Badia RM, Ayguade E, Labarta J, Valero M (2010) Task superscalar: using
processors as functional units. In: Proceedings of the hot topics in parallelism (HOTPAR)

. Hoogerbrugge J, Terechko A (2011) A multithreaded multicore system for embedded media processing.

Trans High-Perform Embedded Archit Compil (THEA) 3(2):154-173 (2011)

Jenista JC, Eom YH, Demsky B (2010) OoOJava: an out-of-order approach to parallel programming.
In: Proceedings of the USENIX conference on hot topic in parallelism (HotPar), pp 11-11

Jenista JC, Eom YH, Demsky BC (2011) OoOlJava: software out-of-order execution. In: Proceedings
of the ACM symposium on principles and practice of parallel programming (PPoPP), pp 57-68
Kalra R, Lysecky R (2010) Configuration locking and schedulability estimation for reduced reconfig-
uration overheads of reconfigurable systems. IEEE Trans Very Large Scale Integr Sys 18(4):671-674
Kish LB (2002) End of Moore’s law: thermal (noise) death of integration in micro and nano electronics.
Phys Lett A 305:144-149

Kish LB (2004) Moore’s law and the energy requirement of computing versus performance. IEE Proc
Circuits Dev Syst 151(2):190-194

Kumar S, Hughes CJ, Nguyen A (2007) Carbon: Architectural support for fine-grained parallelism
on chip multiprocessors. In: Proceedings of the international symposium on computer architecture
(ISCA), pp 162-173

Lam MS, Rinard MC (1991) Coarse-grain parallel programming in Jade. In: Proceedings of the ACM
symposium on principles and practice of parallel programming (PPoPP). ACM, New York, pp 94-105
Lindholm E, Nickolls J, Oberman S, Montrym J (2008) NVIDIA Tesla: a unified graphics and com-
puting architecture. IEEE Micro 28(2):39-55

Meenderinck C, Juurlink B (2010) A case for hardware task management support for the StarSs
programming model. In: Proceedings of the conference on digital system design (DSD), pp 347-354
Meenderinck C, Juurlink B (2011) Nexus: hardware support for task-based programming. In: Proceed-
ings of the conference on digital system design (DSD), pp 442445

Nacul AC, Regazzoni F, Lajolo M (2007) Hardware scheduling support in SMP architectures. In:
Proceedings of the conference on design, automation and test in Europe (DATE), pp 642-647
NogueralJ, Badia RM (2003) System-level power-performance trade-offs in task scheduling for dynam-
ically reconfigurable architectures. In: Proceedings of the international conference on compilers,
architectures and synthesis for embedded systems (CASES), pp 73-83

Noguera J, Badia RM (2004) Multitasking on reconfigurable architectures: microarchitecture support
and dynamic scheduling. ACM Trans Embedded Comput Syst 3(2):385-406

@ Springer

https://pm.bsc.es/projects/bar
https://pm.bsc.es/projects/bar

3592 F. Yazdanpanah, M. Alaei

25.
26.

217.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

Openmp application program interface, version 4.0 (2013). www.openmp.org/. Accessed 06 Feb 2014
Park S (2008) A hardware operating system kernel for multi processors. IEICE Electron Express
5(9):296-302

Pearson PK (1990) Fast hashing of variable-length text strings. Commun ACM 33(6):677-680
Perez, Badia RM, Labarta J (2008) A dependency-aware task-based programming environment for
multi-core architectures. In: Proceedings of the international conference on cluster computing (CC),
pp 142-151

Rinard MC, Lam MS (1998) The design, implementation, and evaluation of Jade. ACM Trans Program
Lang Syst (TPLS) 20(3):483-545

Rinard MC, Scales DJ, Lam MS (1992) Heterogeneous parallel programming in Jade. In: Proceedings
of the conference on supercomputing, pp 245-256

Rinard MC, Scales DJ, Lam MS (1993) Jade: a high-level, machine-independent language for parallel
programming. Computer 26(6):28-38

Saez S, Vila J, Crespo A, Garcia A (1999) A hardware scheduler for complex real time system. In:
Proceedings of the IEEE international symposium industrial electronics (ISIE). IEEE, pp 43-48
Sjalander M, Terechko A, Duranton M (2008) A look-ahead task management unit for embedded
multi-core architectures. In: Proceedings of the conference on digital system design (DSD), pp 149—
157

Yazdanpanah F, Alvarez C, Jimenez-Gonalez D, Badia RM, Valero M (2015) Picos: a hardware runtime
architecture support for ompss. Future Gener Comput Syst

Yazdanpanah F, Jimenez-Gonzalez D, Alvarez-Martinez C, Etsion Y (2013) Hybrid dataflow/von-
Neumann architectures. IEEE Trans Parallel Distrib Syst (TPDS) 25(6):1489-1509

Yazdanpanah F, Jimenez-Gonzalez D, Alvarez-Martinez C, Etsion Y, Badia RM (2013) Analysis of
the task superscalar architecture hardware design. In: Proceedings of the international conference on
computational science (ICCS)

Yazdanpanah F, Jimenez-Gonzalez D, Alvarez-Martinez C, Etsion Y, Badia RM (2013) FPGA-based
prototype of the task superscalar architecture. In: Proceedings of the 7th HIPEAC workshop of recon-
figurable computing (WRC)

www.openmp.org/

Copyright of Journal of Supercomputing is the property of Springer Science & Business
MediaB.V. and its content may not be copied or emailed to multiple sites or posted to a
listserv without the copyright holder's express written permission. However, users may print,
download, or email articles for individua use.

www.manharaa.com

	Design space exploration of hardware task superscalar architecture
	Abstract
	1 Introduction
	2 HTSS overview
	3 Cycle-accurate simulator of HTSS
	4 Methodology and experimental frameworks for design space exploration
	4.1 Methodology
	4.2 Benchmarks
	4.2.1 Traces descriptions

	5 Design space exploration of HTSS
	5.1 HTSS for high-performance computing systems
	5.2 HTSS design with limited workers

	6 Results of the design space exploration
	7 Related work
	8 Conclusions
	References

